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Abstract. By introducing a physically acceptable, supplementary condition for the field 
functions in unified field theory, the electric and magnetic monopole solutions free from 
singularities everywhere were deduced. This indicates that the divergence difficulties of 
a point particle can be removed by utilising a reasonable Boal-Moffat condition. 

1. Introduction 

Many attempts have been made to combine the gravitational and electromagnetic 
fields so that electromagnetism, as well as gravitation, appears as a property of the 
space-time continuum rather than as a separate physical phenomenon. One of the 
most important attempts is Einstein’s unified field theory (Einstein 1945, Einstein 
and Strauss 1946) based on the non-symmetric field. Papapetrou and Schrodinger 
(1951), Kursunoglu (1952) and Bonnor (1951) proposed a modified non-symmetric 
unified field theory which led to some reasonable results. In 1975 Johnson indicated, 
using a fast-motion approximation, that charged particles in the Bonnor theory interact 
in the lowest non-trivial order of approximation through the complete laws of classical 
electrodynamics-Maxwell’s equations for the electric and magnetic fields, the Lorentz 
force and the radiation force acting on the particles. Moffat and Boal (1975), Boal 
and Moffat (1975) and Pant (1975) have derived the exact static spherically symmetric 
singular solution to the field equation. Their solution represents an isolated electric 
particle, but they have shown that there are no magnetic monopole solutions in the 
non-symmetric field equations. However, I do not believe that their conclusions are 
valid. 

In this paper we will show that both electric and magnetic monopole solutions 
free from singularities everywhere in the unified field theory exist, by introducing a 
new (Boal and Moffatt 1975) supplementary condition for the field functions. 

2. Electrostatic monopole solutions free from singularities 

Following the work by Moffat and Boal (1975) and Boal and Moffat (1975), the 
unique field equations can be written in the form 

dagfiv - g f i X v - g ~ v ~ ~ a  = 0, (2.1) 

r ~ f i a ~  = 0 ,  (2.2) 
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RT,,,) = 0, (2.3) 

a u ~ L Y l  +a,~,*,,, + a y ~ [ * o , ~  =o ,  (2.4) 

R z,, = R,, + IWy, (2.5) 

R,, = sur;,,- %aurp,ul + a,rTuUl) - rEUr:,,+ r;vr:u, 

where 

(2.6) 

(2.7) Iwy = - k -  (gWug 

gPYguu = 6:, (2.8) 

2 [ U P 1  1 gvp + ~ g w v g u ~ g r u p l  + g [ w v A  

with 

g[,,,i = c - 2 k f i F , v ,  (2.9) 

(in gaussian units) 

(2.10) 

(2.11) 

1 
g[,ul= dg,w - g”, ), 

g(,Yl= + gu, ) *  
1 

FWv is the electromagnetic tensor; k ,  the universal constant; G ,  the gravitational 
constant and c,  the velocity of light. In contrast with Moffat (1979), in our notation, 
g[,,,] is a real skew-tensor, not an imaginary one. 

Dividing I,,, into symmetric and skew parts, we have 

(2.12) 

(2.13) 

[PUI [ml 

[pal [pa l  [pol 
I(,”, = -k-2(gbAdg & U Y I  + ~ ~ ” ~ l ~ ~ p u i ~ ~ u r r , + : ~ ~ , u ~ ~ ~ u ~ l ~  1, 
I[,”]= -k -2(g[rPlg g[uul+ g,w,,g &U1 + ~ ~ ~ W v I g I w l g  + gr,uI). 

Now, let us consider the electrostatic spherically symmetric solutions. 

given by 
According to Bonnor (195 l ) ,  the most general spherically symmetric tensors are 

W -~ 0 2 a y - w  2 0  
Y 

a y - w  
-____ 

0 -p - 1 0 0 
0 0 - (p sin2 01-l 0 

a 
2 a y - w  

0 0 
W 

2 a 7 - w  

E cp s 2 T ) .  

(2.14) 

(2.15) 

Inserting (2.14) and (2.15) into (2.1) and (2.2) we obtain 

r:, = a i / 2 a ,  r:, = cosec’ 0ri3 = - p f / 2 a ,  

r;,= -ri1 = ( w / 2 a ) [ i  - (ay/w2) ] f / ( i  - a y / w 2 ) ,  

r:, = [ 4 w ~ ’ a y  - 2 w 2 a ’ y  - ( W  + a y ) a y i ] / 2 a  ’ ( w  - a y ) ,  
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r:, = +r;, = pi/2p,  

r;,=ril =(2wwia - w ~ ~ ~ - ~ ~ ~ ~ ) / ( ~ ~ ( w ~ - ~ ~ ) ) ,  

r:, = -sin e cos e, r:, = -r:2 = -wpi/2ffp, 

r:, = r:, = pi/2p,  r3 2 3  -r3 - 32 - -cot e, r:, = -r:3 = -wpi/2ap, (2.16) 

[ I -  (av/w2)1’/[1 - (ar/w2)1 = 2P’/P, 

where the prime denotes differentiation with respect to the radical coordinate r. 
Inserting these results into (2.3) and (2.4), we only obtain three independent 

equations by using the results for R,, by Bonnor (1951), and the results for I,, by 
Moffat and Boal (1975): 

(2.17) 

- - ( p i / p ) i - $ ( p i / p )  + (aip1/2ap) + r;‘,(a’/2a - r;,) + ( i /k2)aw2/(ay - w 2 )  - (I-:,)’= 0,  

1 - (P’/2a)’- (P ’ /4a) [ (  w - a y ) ’ / ( w  - a y ) ]  - ( l / k  2)pw 2 / ( a y  - w 2, = 0, 

(ri4)’ + (w2 /4a  2)[(i - a y / W 2 ) i / ( i  - ay/  w ’ ) ] ~  + w 2 ~ 1 2 / 2 a  ’ p Z  

( 2 . 1 8 ~ )  

(2.186) 2 

+r:4(ai/2a - r ; ‘ , + p i / p ) - ( i / k 2 ) y w 2 / ( a y -  w 2 )  =o.  ( 2 . 1 8 ~ )  

The fourth equation RI,  + I , ,  = 0 is not an independent equation because the 
contracted Bianchi identical equation Rz = 0. 

In order to solve these equations, we need a supplementary condition because of 
the restriction of the contracted Bianchi identical equation. Following Fock’s view- 
point (Fock 1955), the supplementary condition is by no means arbitrary. To obtain 
reasonable physical results, e.g. the definition of energy of a charged particle, we 
utilise the Boal-Moffat (1975) condition 

- g 4 4 g l l  = a y  = 1. (2.19) 

In Moffat and Boal (1975) the supplementary condition is p = r 2  which leads to a 
singular solution for the charged particle. However, a new supplementary condition 
ay = 1 is introduced in 3: 3 of Boal and Moffat (1975). Here the new supplementary 
condition a y  = 1 is used. 

By solving (2.18) and using the results of Moffat and Boal (1975), we find that 

y = a T 1  = ( 1 - 2 m ~ - ” 2 + Q 2 P - 1 ) ( 1 + k 2 Q 2 ~ - 2 ) ,  

dp/dr = 2P3/ ’Q2+ k 2 Q 2 ) - 1 / 2 ,  
w = * k Q ( P 2 + k 2 Q  2 ) -1 /2  , 

where m = GM/c2 ,  Q 2  = G e 2 / c 4  in Gaussian units. 
Solving (2.206), we obtain 

1 + & ) l 7  

(2.20u) 

(2.206) 

(2.20c) 

(2.21) 
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(first kind of elliptic integral), dA 6 

k(4’ $$=lo ( 1 - 2 ~ i n ~ A ) ” ~  
(2.22) 

6 
E (  4 ,  i) = lo ( 1  --i sin2 A ) ’ / 2  dA (second kind of elliptic integral) 

where ro is a constant of integration. 
Making a coordinate transformation of 

dp/dr = (1 + k 2 Q 2 / p 4 ) - 1 / 2  (2.23) 

we get 
’a = ( 1 - 2 m p - 1 + i Q 2 p - 2 ) - 1 ,  

’ y  = (1 - 2mp-’ + Q2p-2)(1 + k2Q2p-4 ) ,  

’ w  = * kQp-2. 

(2.24) 

Taking into account k 2 Q 2 - 0  and neglecting the terms k 2 Q 2 / r ;  (or k2Q2/p5’31r=o) 
we get from (2.20)-(2.22) 

p = ( r  +ro)2[1 +;k2Q2(r+r0)-4] ,  y =a-’ = [l -2mp-’ /2+ Q2p- ’ ] (1  + k 2 Q 2 p - 2 ) ,  
w = * k Q ( ( ? 2 + k 2 Q  2 1 -1/2 , 

E ( r )  = c 2 g I 4 ( k d G ) - I  = * e ( p 2  + k2Q2)-’’2, 
(2.25) 

lim E(r)(-det g(c,vJ1’2 d6‘ d q  = *47re (0 r a). 
0 - a  + 
7 - a  

Under the approximation mentioned, the following equation is obtained from (2.23) 

p ==(r+ro)[ l  +$k2Q2(r  +ro)-4]1’2 (0  e r e 00) .  (2.26) 

In order to determine the constant ro, we utilise a generalising stationary ‘equilibrium’ 
condition (Ross 1972) 

(2.27) lim [(d/dr)(g44 - 111 = 0 
r - 0  

and neglecting the terms of k 2 Q 2 / [ p ’ ~ 2 ] r ~ o  and the higher terms;then 
m = [Q’/[p]r‘/’,] = Q 2 / r o ( l  + f k 2 Q  2 ro -4  1 1/2 

= Q 2 / r o [ l  +b(Gk2Q2/r;c4)]  (2.28) 
hence we have 

h4c2 = e2/r, ,  (2.29) 
re = r o [ l  +&k2e2G/r ;c4 ) ] ,  

4 4 4  2 4 1 /2  (2.30) 
[ E ( ~ ) ] , = o =  *e/{ro[l  + f ( k 2 e 2 G / c  r o ) ]  + ( k G e 2 / c  )} , 

[ylr=o = [a-Ilr=0= [ I  - ( G e 2 / c 4 r t ) ] ( 1  + ( k 2 e 2 G / c 4 r t ) ) ,  
y = a - l z [ l  - ( G e 2 / c 4 r e ) ] ( l  + ( k 2 e 2 G / c 4 r t ) ) .  

(2.31) 
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From (2.31) we see that the ‘event horizon’ does not occur unless Ge2/c4r:  = 1. 
It follows from the above result that the divergence difficulties in unified field 

theory can be removed by utilising a new Boal-Moffat supplementary condition for the 
field functions. This shows that the supplementary condition is by no means arbitrary 
as indicated by Fock (1955). 

It must be noted that the curvature tensor is also non-singular in the physical 
region 0 s r s a. (The singularity occurs in the non-physical region 0 > r . )  In the 
recent work by Moffat (1979), a similar conclusion for the neutral source is derived, 
which shows that physical space-time, in the theory, is free of the essential singularity 
at r = 0. 

3. Magnetic monopole solution free from singularities 

For a static spherically symmetric magnetic monopole, we have (Bonnor 1951) 

-a 0 0 

0 0 

-1 
Y 

0 0 -1 

- p / ( f 2 + P 2 )  f / ( f 2 + P 2 )  sin e 
0 - f / ( f2+P2)  sin 8 -P/ ( f2+P2)  sin2 6 

0 0 

ri4 = r ‘ / 2 a ,  17;2 = r:, = A/2, 

r:, = a i / 2 a ,  r:, = coset' = ( f B  -AP) /2a ,  

r:, = -ri2 = ( fA  + BP) sin e/2a, 

r:, = -r& = -B cosec 0 / 2 ,  

r3 -r3 - r;, = -r:l = B sin e /2 ,  r:, = -sin e cos e, 13 - 31 -A/2,  

r:2 = r:, =cot 8, I-& = C4 = $12 y,  

A=- f f ’  + PP ’ B=- f P ’ - P f ‘  
f 2 + P 2  ’ f 2 + P 2  ’ 

R l l  = -A’-L 2(A2 + B 2 )  +Aa’/2a +T;4((a‘/2a) - r‘f4) - (l-‘;4)’, 

R22=cosec2 eR33=[(fB - P A ) / ~ ~ ] ’ + [ ~ ~ B - P A ~ ~ ~ Y ~ ‘ I / ~ ~ ~ Y ~  
+ B ( f A + P B ) / 2 a + l ,  

R ~ ~ =  (r:4)’+ri4(a’/2a - r ; 4 + ~ ) ,  

R23 cosec 8 = -R32 cosec = [ ( f A  +PB)/2a]’ 

- B (  f B  -PA)/2a + ( fA  +PB)(a’+ 2a r:4)/4a 2,  

11 1 = a f  ’ l k  ( f 2  + P ), 1 4 4  = - Y f  2 /  k ( f + P 1, 
122=cosec2 el3,= - p f 2 / k 2 ( f 2 + p Z ) ,  

123cosec0 =-132cosece = - ( f / k 2 ) [ 1 + p 2 / ( f 2 + p 2 ) ] ,  

(3.5) 

(3.6) 

where the prime denotes the differentiation with respect to r .  Note that k = h k  (Boa1 
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and Moffat 1975). Inserting these into the field equations and using (3.16) and (3.17) 
in the work by Boal and Moffat (1975), we get 

y”/2y - ( ( Y ‘ Y ‘ / ~ ( Y Y )  - i ( ~ ’ / y ) ’  + ( A y ’ / 2 y )  -af’/k’( f’+p’) = O ,  (3.7) 
-A‘-:(A’ + B’) +iA[ln ay]’ = 0. (3.8) 

Now we substitute a magnetic monopole field of the form 

then we have 

(in gaussian units), hence 

f = *kJG$,/c’ =constant (3.11) 

A =PP’ / ( f2+P2) ,  B = fP’/(f’+p’). (3.12) 

It must be pointed out that there is an error in Boal and Moffat (1975). They have 
utilised two supplementary conditions for the field functions, i.e. p = r’, and ay = 1, 
which lead to the incorrect result: 9, = 0 (or f = 0). However, in the case of spherical 
symmetry, only one supplementary condition is needed. 

Inserting (3.11) and (3.12) into (3.7) and (3.8), we find the following equations by 
using the condition (2.19) 

(3.13) 

(3.14) 

y “ + [Po’/( f ’ + /3 ’ ) ]7 ’  - [2G4 ”/e4( f + p 2)] = 0 

[PP’ / ( f  ’ + P2)1’ + t[P’’/(f  ’ + P 2)1 = 0. 
Solving (3.14), we have 

p’  = Ci( f’ +p2) /p3 ’2 .  (3.15) 
Taking into account the asymptotical condition 

p’ - 2r, (3.16) 
r-m 

P - r’, 
r-m 

thus we obtain 

pi=  2 ( f 2 + p 2 ) / ~ 3 / 2 .  

Hence 

Inserting (3.17) into (3.13), we get 

(3.17) 

(3.18) 

d dy +2(p4-2f2)dy 2G$i  dp(dp) p(p4+f2)  d p = ~ ~ p ~ ( l + f ’ / p ~ ) ~  @ ’ = P I .  (3.19) 
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Solving this equation, we have 

(3.21) 

where 

(3.22) 

Taking into account k 2 = 0 ,  (3.23) and (3.24) are found by assuming that r:>> 
k2G$;/c4 and neglecting the terms of k2G4;/c4r:1 (or k2G4;/c4[pS],=o) and the 
higher terms: 

k 4, = -21f/’/2/p, (3.23) 

(3.24) -4  - 2  

( 2 
-- 1 y = a  ~ C ~ - - C ’ ~ - ’ + G $ Z , C  p . 

Making the asymptotic condition 

we obtain 

c2 = 2 G M / c 2 ,  c 3 =  1. 

Hence we have 

y = a-’ 1 - 2GM/c  ‘ p  + G 9 ; l c 4 p 2 ,  

p = ( r  +ro){l  - f [k2G9: lc4(r  +rd4]}, 

(3.26) 

(3.27) 

f = *k4,&/c2, (3.28) 

H = *4, /p 2 ,  
(3.29) 

$ H(-det g ( F v , ) 1 / 2  dB d q  = f47~9, (0  .S r G a). 

By using the stationary ‘equilibrium’ condition (2.27),  we have 

Me2 =9i/@),=,  

= 9 i / r o [ l  - f ( k ) 2 G 4 i / ~ 4 r i ]  

E 4 ,/rm ; (3.30) 

[ a - l ] , = O = [ y ] r = o =  1 - G 9 2 / c 4 r k ,  (3.31) 

(3.32) [ H I r z o  = *4, /rm.  

From the results obtained above we see that there exists a magnetic monopole 
solution free from singularities everywhere. This indicates that the divergence difficul- 
ties in the unified field theory can be removed by utilising a new (Boa1 and Moffatt 
1975) supplementary condition for the field functions. 

2 

thus 

2 
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It must be pointed out that, in our opinion, the Moffat and Boal motion equations 
(see equation (4.19) of Johnson 1975) actually describe the motion of the magnetic 
monopoles because the magnetic solutions of g ~ , ~ ]  = kEstn4,n, 4 = X r- '  constant and 
gp4] = 0 are chosen in their work. 

4. Conclusion 

In conclusion, utilising a new Boal-Moff at supplementary condition, we have obtained 
the following results 

(a) There exists an electrostatic solution free from singularities everywhere describ- 
ing an electrostatic monopole with definite energy. 

(b) There exists a magnetostatic solution free from singularities everywhere 
describing a magnetostatic monopole with definite energy. 

(c) From the results which we have obtained above we see that the divergence 
difficulties in the unified field theory can be removed by introducing a physically 
reasonable Boal-Moff at supplementary condition for the field functions. 
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